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Calculations and the LHC

Experiment: Theory:

I Fixed-order calculations suitable for inclusive measurements
I Jet selection cuts require more detailed description of final state
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Example: Higgs Couplings

Assume universal rescaling of:
I vector couplings κV
I fermion couplings κF

Several channels involve jet selection cuts:
I H →WW → `ν`ν requires jet veto

to remove tt̄→WWbb̄ background
I H → ττ most sensitive to

vector boson fusion (2 jet selection)

Higgs and Jet Binning Jet Vetoes and Factorization NNLL�pT
+NNLO Resummation for p

jet
T

Summary

Identifying the Higgs

... by measuring its properties requires all production and decay channels

First step:
Apply a common scaling factor for vec-
torial and fermionic Higgs couplings
and fit for it

H →ττ, bb̄ essential to measure
fermionic couplings
H →WW very sensitive to
vectorial couplings

⇒ All of these involve exclusive jet
bins

 (scaling of vector boson couplings)Vκ
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Exclusive Measurements

Introduction Resumming Jet Cross Sections in SCET Matching with Helicity Amplitudes Summary

Soft-Collinear Effective Theory (SCET)

[Bauer, Fleming, Pirjol, Stewart; Rothstein, Beneke, Chapovsky, Diehl, Feldmann]

An effective theory of QCD with which we can study what goes on before and
after the hard interaction

Soft Low-energy particles without
preferred direction

Collinear Energetic jets along incoming
and outgoing directions

�

�

p p

Soft

Jet Jet

Jet

Jet

Advantages of SCET

Systematic power counting and expansion in soft and collinear limits
manifest at the Lagrangian level

Clear separation of different contributions from different energy scales
→ Straightforward to obtain resummation of corresponding logarithms
→ “Nonsingular” corrections can be included systematically

Frank Tackmann (DESY) Combining Helicity Amplitudes with Resummation 2012-04-19 6 / 24

I Hard process is accompanied by
I Collinear ISR and collinear FSR
I Soft radiation (underlying event)

I Hadronization effects
I Physics at multiple scales: pjet

T � pveto
T � ΛQCD, . . .

I May be described/modeled by Monte Carlo [MC@NLO, POWHEG]
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Multi-Scale Cross Section

Cross section contains logarithms: L = ln(pcut/
√
ŝ)

I Important when cut on hadronic final state pcut � hard scale
√
ŝ

Terms in the cross section

σ = σ0

{
1 + αs[c12L

2 + c11L+ c10 + n1(pcut)]

+ α2
s[c24L

4 + c23L
3 + c22L

2 + c21L+ c20 + n2(pcut)]

+ α3
s[c36L

6 + c35L
5 + c34L

4 + c33L
3 + c32L

2 + . . . ]

+
... +

... +
... +

... +
. . .
}

Different calculations:
I Fixed order: LO, NLO, NNLO, . . .

I Monte Carlo: Parton-shower, MC@NLO
I Resummed: LL, NLL, NNLL, . . .

SCET focuses on the numerically important singular contributions
I Nonsingular ni(pcut) from fixed-order calculation
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Example: Higgs + 0 jets
4
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FIG. 2. Comparison of NNLO, NLL+NNLO and NNLL+NNLO results for jet-veto efficiencies for Higgs (left) and Z-boson
(right) production at the 8 TeV LHC. The Higgs plot includes the result from a POWHEG (revision 1683) [20, 40] plus Pythia
(6.426) [17, 41] simulation in which the Higgs-boson pt distribution was reweighted to match the NNLL+NNLO prediction
from HqT 2.0 [7] as in [21]. The lower panels show results normalised to the central NNLL+NNLO efficiencies.

Our central predictions have µR = µF = Q = M/2 and
scheme a matching, with MSTW2008NNLO PDFs [54].
We use the anti-kt [29] jet-algorithm with R = 0.5, as
implemented in FastJet [55]. For the Higgs case we use
the large mtop approximation and ignore bb̄ fusion and
b’s in the gg → H loops (corrections beyond this approx-
imation have a relevant impact [16, 56]). To determine
uncertainties we vary µR and µF by a factor of two in
either direction, requiring 1/2 ≤ µR/µF ≤ 2. Maintain-
ing central µR,F values, we also vary Q by a factor of
two and change to matching schemes b and c. Our final
uncertainty band is the envelope of these variations. In
the fixed-order results, the band is just the envelope of
µR,F variations.

The results for the jet-veto efficiency in Higgs and Z-
boson production are shown in Fig. 2 for 8 TeV LHC
collisions. Compared to pure NNLO results, the cen-
tral value is slightly higher and for Higgs production, the
uncertainties reduced, especially for lower pt,veto values.
Compared to NNLO+NLL results [21], the central values
are higher, sometimes close to edge of the NNLO+NLL
bands; since the NNLO+NLL results used the same ap-
proach for estimating the uncertainties, this suggests that
the approach is not unduly conservative. In the Higgs
case, the NNLO+NNLL uncertainty band is not particu-
larly smaller than the NNLO+NLL one. This should not
be a surprise, since [21] highlighted the existence of pos-
sible substantial corrections beyond NNLL and beyond
NNLO. For the Higgs case, we also show a prediction
from POWHEG [20, 40] interfaced to Pythia 6.4 [17] at
parton level (Perugia 2011 shower tune [41]), reweighted

to describe the NNLL+NNLO Higgs-boson pt distribu-
tion from HqT (v2.0) [7], as used by the LHC experi-
ments. Though reweighting fails to provide NNLO or
NNLL accuracy for the jet veto, for pt,veto scales of prac-
tical relevance, the result agrees well with our central
prediction. It is however harder to reliably estimate un-
certainties in reweighting approaches than in direct cal-
culations.

Finally, we provide central results and uncertainties
for the jet-veto efficiencies and 0-jet cross sections (in
pb) with cuts (in GeV) like those used by ATLAS and
CMS, and also for a larger R value:

R pt,veto ε(7 TeV) σ
(7 TeV)
0-jet ε(8 TeV) σ

(8 TeV)
0-jet

0.4 25 0.63+0.07
−0.05 9.6+1.3

−1.1 0.61+0.07
−0.06 12.0+1.6

−1.4

0.5 30 0.68+0.06
−0.05 10.4+1.2

−1.1 0.67+0.06
−0.05 13.0+1.5

−1.5

1.0 30 0.64+0.03
−0.05 9.8+0.8

−1.1 0.63+0.04
−0.05 12.2+1.1

−1.4

Interestingly, the R = 1 results have reduced upper un-
certainties, due perhaps to the smaller value of the NNLL
f(R) correction (a large f(R) introduces significant Q-
scale dependence). The above results are without a ra-
pidity cut on the jets; the rapidity cuts used by ATLAS
and CMS lead only to small, < 1%, differences [21].

For the 0-jet cross sections above, we used total
cross sections at 7 TeV and 8 TeV of 15.3+1.1

−1.2 pb and

19.5+1.4
−1.5 pb respectively [57, 58] (based on results in-

cluding [45–49]) and took their scale uncertainties to be
uncorrelated with those of the efficiencies. Symmetris-
ing uncertainties, we find correlation coefficients between

[Banfi, Monni, Salam, Zanderighi]

I Resummation improves prediction for pT,veto � mH

I Cross section for pT,veto ∼ mH given by fixed-order
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Other Resummation Examples
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Figure 6: Resummation uncertainty for the NLL resummed result with a running soft scale
(NLL, solid blue) and a fixed soft scale (NLLfixed, dashed red) for squark-antisquark (top-
left), squark-squark (top-right), squark-gluino (centre-left), gluino-gluino (centre-right),
stop-antistop (bottom-left) production and the inclusive gluino and light-flavour squark
cross section (bottom-right) at LHC with

√
s = 7 TeV. The central line represents the

K-factor for the default scale choice, while the band gives the resummation uncertainty
associated with the result. See text for explanation.

17

[Falgari, Schwinn, Wever]

I K-factor enhancement from
threshold resummation

I L = ln(1− 4M2
g̃ /ŝ)

Subjettiness τ21 3

where σ0 is the tree-level cross-section given by the
Z decay rate. Here H = H(mZ , µ), J(si, µ), and
S(k1, k2, {ni}, µ) are respectively the Z → qq̄ hard func-
tion, inclusive jet function, and 2-jettiness soft function.
H and J are known at O(α2

s) [28, 29]. For simplicity, we
consider the narrow width limit, neglecting O(ΓZ/mZ)
corrections. We also neglect non-singular corrections at
O(αs). These contribute less than 5% in the peak of the
τ21 distribution and can be included following [23, 24].

We now show that the 2-jettiness soft function S can be
related to the hemisphere soft function Shemi—relevant
for thrust and heavy jet mass—which is known pertur-
batively to O(α2

s) [30, 31]. The soft function is

S(k1, k2, n1 · n2, µ, Λ) ≡ 1

Nc

∑
Xs

δ(k1 − n1 ·P 1
s )

× δ(k2 − n2 ·P 2
s ) 〈0| Y T

n2
Yn1 |Xs〉 〈Xs| Y †

n1
Y

∗
n2

|0〉 , (10)

where the Y ’s are light-like Wilson lines and P 1,2
s are the

momenta of the subjets J1,2 in the state |Xs〉. Rotational
invariance implies that the subjet directions only appear
in the combination n1 · n2, and the argument Λ ≡ ΛQCD

is a reminder of nonperturbative corrections contained in
S. The hemisphere case corresponds to n1 · n2 = 2, so
that Shemi(kL, kR, µ, Λ) = S(kL, kR, 2, µ, Λ). From (1),
the partitioning into regions of 2-subjettiness is invariant
under a common rescaling of the subjet direction, n1 →
βn1 and n2 → βn2. So (10) satisfies

S(k1, k2, n1 ·n2, µ, Λ) = β2S(βk1, βk2, β
2n1 ·n2, µ, Λ).

Choosing

β = βθ =

√
2

n1 · n2
=

√
m2

Z + Q2 sin2 θ

mZ
, (11)

we find

S(k1, k2, n1 · n2, µ, Λ) = β2
θ S (βθk1, βθk2, 2, µ, Λ)

= Shemi (k1, k2, µ/βθ, Λ/βθ) , (12)

where we have rescaled all dimensionful arguments by
β−1

θ and used the fact that S has mass dimension −2.
When ki ' Λ/βθ, the leading nonperturbative cor-

rection to Shemi is equivalent to a shift [32–34], ki →
ki − Φ/βθ, where Φ ∼ Λ is Q-independent. Since T2

in (1) is not identical to thrust for massive hadrons, we
cannot use the value found in [24]. All the objects in
(9) have known renormalization group equations, so we
can sum large logarithms of τ21 up to N3LL (with a Padé
approximation for the small contribution of the four-loop
cusp anomalous dimension). Thus for τ21 ' 2Λ/(T̂1βθ)
we have

1

σ0

dσ

dτ21
= T̂ 2

1

∫
d cos θ

2
H(mZ , µH)UH(mZ , µH , µJ)

×
∫

dzs ds1ds2J
(
s1, µJ

)
J
(
s2, µJ

)
Sτ

(
T̂1zs,

µS

βθ
, αs(µS)

)
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FIG. 2: Results of the N3LL analytic calculation for τ21 with
Φ = 0. The distribution saturates for Q >∼ 400 GeV.
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baseline Pythia (histograms). The heavier (lighter) band is
N3LL (NNLL), with widths given by factor of two variations
of the hard, jet, and soft scales. Here, Φ = 700 MeV. Arrows
indicate the approximate range of validity of (13).

× U τ
S

(
T̂1τ21− 2Φ

βθ
− s1

2E1
− s2

2E2
−T̂1zs,

µJ

βθ
,
µS

βθ

)
. (13)

Here Sτ is the perturbative thrust soft function, and H ,
J , and Sτ are fixed-order expansions in αs(µH), αs(µJ ),
and αs(µS) respectively. UH and U τ

S are evolution ker-
nels which sum αi

s lnjτ21 terms. See [23] for details.
The natural scale choices are

µH = mZ , µJ = µQ
√

τ21, µS = µQ τ21. (14)

Here µQ = T̂1

√
1 + Q2/(2m2

Z) is an average over θ of

T̂1βθ which appears in the large logarithms. For Q = 0
one has µQ = mZ , while for Q → ∞ one has µQ =
mZ/(2

√
2). We perform the s1,2 and zs integrations in

(13) analytically and the θ integral numerically.
Results for the τ21 distribution for various Q are shown

in Fig. 2. As anticipated, the curves rapidly approach a
fixed distribution at large Q.

In Fig. 3 we show a comparison to a “baseline” Pythia
distribution, where the effects of hadronization are in-
cluded but the Z width, finite cone size, and ISR/UE
contamination have been turned off. For this compari-
son we fix Φ = 700 MeV to match the peak of the Q = 0

[Feige, Schwartz, Stewart, Thaler]

I Two-subjets in boosted
Z → qq̄ jet of energy Q

I L = ln τ21
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Hadronization Effects

Jet mass in pp→ Z+jet
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Figure 5: Comparison of our resummed and matched result NLL+LO (in red) to standard Monte

Carlo event generators, at the parton level.
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Figure 6: Results for the ζ distributions obtained with standard Monte Carlo parton showers, with

hadronisation corrections (dashed lines) compared to analytical resummation with non-perturbative

shifts (shaded bands) as explained in the main text.

6. Dijets at the LHC

In this section we provide numerical predictions for the jet mass distribution in dijet events.

As before, we consider proton-proton collision at
√

s = 7 TeV, with jets defined according to

the anti-kt algorithm [27]. The main complication with respect to the Z+jet case previously

– 25 –

[Dasgupta, Khelifa-Kerfa, Marzani, Spannowsky]

Track-based jet mass

0 20 40 60 80 100
0.00
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mJ @GeVD

1

Σ
dΣ

d mJ

Track function
Pythia hadr.

pp®H+j, anti-kT , R=1.0
300<pT

J <400 GeV, ÈΗJ È<2

[Chang, Procura, Thaler, WW]

I Hadronization shifts:
m2
J → m2

J − αRpTJ
with α ∼ 2 GeV

I Conversion to charged particles
described by track functions
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Goal

I Powerful methods for calculating helicity amplitudes analytically and
numerically exist. Used in various programs [MCFM, Rocket, BlackHat, . . . ]

I We incorporate helicity amplitudes in Soft-Collinear Effective Theory
using a helicity operator basis compatible with

I Standard color structures
I Discrete symmetries
I Crossing symmetry

I Our paper will illustrate ease of use with explicit LO and NLO results for:
I pp→W/Z/γ + 0, 1, 2 jets
I pp→ H + 0, 1, 2 jets
I pp→ 2, 3 jets

8 / 33
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Resumming Jet Cross Sections in SCET
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Soft-Collinear Effective Theory (SCET)

[Bauer, Fleming, Luke, Pirjol, Stewart]

Effective theory of QCD describing what happens before/after hard interaction

Soft Low-energy particles without
preferred direction

Collinear Energetic jets along incoming
and outgoing directions

Introduction Resumming Jet Cross Sections in SCET Matching with Helicity Amplitudes Summary

Soft-Collinear Effective Theory (SCET)

[Bauer, Fleming, Pirjol, Stewart; Rothstein, Beneke, Chapovsky, Diehl, Feldmann]

An effective theory of QCD with which we can study what goes on before and
after the hard interaction

Soft Low-energy particles without
preferred direction

Collinear Energetic jets along incoming
and outgoing directions

�

�

p p

Soft

Jet Jet

Jet

Jet

Advantages of SCET

Systematic power counting and expansion in soft and collinear limits
manifest at the Lagrangian level

Clear separation of different contributions from different energy scales
→ Straightforward to obtain resummation of corresponding logarithms
→ “Nonsingular” corrections can be included systematically

Frank Tackmann (DESY) Combining Helicity Amplitudes with Resummation 2012-04-19 6 / 24

Advantages of SCET
I Systematic power counting, expansion in soft and collinear limits and

gauge invariance manifest at the Lagrangian level
I Operator definitions of soft and collinear contributions
I “Nonsingular” corrections can be included systematically

9 / 33



Introduction Resumming Jet Cross Sections in SCET Matching with Helicity Amplitudes Examples Conclusions

Soft-Collinear Effective Theory (SCET)

[Bauer, Fleming, Luke, Pirjol, Stewart]

Effective theory of QCD describing what happens before/after hard interaction

Soft Low-energy particles without
preferred direction

Collinear Energetic jets along incoming
and outgoing directions

Introduction Resumming Jet Cross Sections in SCET Matching with Helicity Amplitudes Summary

Soft-Collinear Effective Theory (SCET)

[Bauer, Fleming, Pirjol, Stewart; Rothstein, Beneke, Chapovsky, Diehl, Feldmann]

An effective theory of QCD with which we can study what goes on before and
after the hard interaction

Soft Low-energy particles without
preferred direction

Collinear Energetic jets along incoming
and outgoing directions

�

�

p p

Soft

Jet Jet

Jet

Jet

Advantages of SCET

Systematic power counting and expansion in soft and collinear limits
manifest at the Lagrangian level

Clear separation of different contributions from different energy scales
→ Straightforward to obtain resummation of corresponding logarithms
→ “Nonsingular” corrections can be included systematically

Frank Tackmann (DESY) Combining Helicity Amplitudes with Resummation 2012-04-19 6 / 24

Advantages of SCET
I Systematic power counting, expansion in soft and collinear limits and

gauge invariance manifest at the Lagrangian level
I Operator definitions of soft and collinear contributions
I “Nonsingular” corrections can be included systematically

9 / 33



Introduction Resumming Jet Cross Sections in SCET Matching with Helicity Amplitudes Examples Conclusions

Example: pp→W + 2 jets

W W

QCD
I Real and virtual corrections
I IR divergences cancel after costly phase-space integration

SCET
I Match QCD onto SCET: partons correspond to energetic jets

I Only (IR finite part of) virtual QCD corrections
I Real radiation described by collinear and soft degrees of freedom
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Factorization for Exclusive Jet Cross Sections
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Soft-Collinear Effective Theory (SCET)

[Bauer, Fleming, Pirjol, Stewart; Rothstein, Beneke, Chapovsky, Diehl, Feldmann]

An effective theory of QCD with which we can study what goes on before and
after the hard interaction

Soft Low-energy particles without
preferred direction

Collinear Energetic jets along incoming
and outgoing directions
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p p

Soft

Jet Jet

Jet

Jet

Advantages of SCET

Systematic power counting and expansion in soft and collinear limits
manifest at the Lagrangian level

Clear separation of different contributions from different energy scales
→ Straightforward to obtain resummation of corresponding logarithms
→ “Nonsingular” corrections can be included systematically

Frank Tackmann (DESY) Combining Helicity Amplitudes with Resummation 2012-04-19 6 / 24
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SCET allows us to derive factorized cross section
� Each function has a precise definition in the effective field theory
� RG evolution between scales resums logarithms of ratios of scales
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Beam, jet, soft functions:
I Contain virtual and integral over real radiation in collinear or soft limit

(each function is separately IR finite)
I Depend on jet definition/observable
I Beam and jet function depend on parton type and energy
I Soft function depends on color representation and direction of all partons

Hard function
I Contains hard virtual corrections
I Independent of observable and precise form of factorization theorem
I Depends on process and hard kinematics

(hard = away from singular limits)
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N -Jettiness Event Shape

[Stewart, FT, Waalewijn]

TN =
∑

k

min

{
2qa ·pk
Qa

,
2qb ·pk
Qb

,
2q1 ·pk
Q1

,
2q2 ·pk
Q2

, . . . ,
2qN ·pk
QN

}

≡ T aN + T bN + T 1
N + · · ·+ T NN

I qa,b, qj : light-like reference directions
from overall minimization
(or other jet algorithm like anti-kT )

I Qa,b, Qj : determine distance measure
of particle k to beam and jet directions

I Divides phase space into
N jet regions and 2 beam regions

I Jet mass m2
i = QiT iN
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T a
N

T b
N

For small TN � Q final state contains exactly N jets (+ 2 ISR jets)
(Generalization of thrust for e+e−→ 2 jets to pp → N jets)

Frank Tackmann (DESY) Combining Helicity Amplitudes with Resummation 2012-04-19 10 / 24

For small TN � Q final state contains exactly N jets (+2 ISR jets)
(Generalization of thrust for e+e−→ 2 jets to pp→ N jets)

13 / 33



Introduction Resumming Jet Cross Sections in SCET Matching with Helicity Amplitudes Examples Conclusions

N -Jettiness Event Shape

[Stewart, FT, Waalewijn]

TN =
∑

k

min

{
2qa ·pk
Qa

,
2qb ·pk
Qb

,
2q1 ·pk
Q1

,
2q2 ·pk
Q2

, . . . ,
2qN ·pk
QN

}

≡ T aN + T bN + T 1
N + · · ·+ T NN

I qa,b, qj : light-like reference directions
from overall minimization
(or other jet algorithm like anti-kT )

I Qa,b, Qj : determine distance measure
of particle k to beam and jet directions

I Divides phase space into
N jet regions and 2 beam regions

I Jet mass m2
i = QiT iN

Introduction Resumming Jet Cross Sections in SCET Matching with Helicity Amplitudes Summary

N-Jettiness Event Shape

[Stewart, FT, Waalewijn]

TN =
�

k

|�pkT | min

�
2qa ·pk

Qa

,
2qb ·pk

Qb

,
2q1 ·pk

Q1

,
2q2 ·pk

Q2

, . . . ,
2qN ·pk

QN

�

≡ T a
N + T b

N + T 1
N + · · · + T N

N

Qa,b, Qj : determine distance measure
of particle k to beam and jet directions

qa,b, qj : light-like reference directions
from overall minimization
(or other jet algorithm like anti-kT)

Divides phase space into
N jet regions and 2 beam regions W/Z

qbqa

q1

q2

T 1
N

T 2
N

T a
N

T b
N

For small TN � Q final state contains exactly N jets (+ 2 ISR jets)
(Generalization of thrust for e+e−→ 2 jets to pp → N jets)

Frank Tackmann (DESY) Combining Helicity Amplitudes with Resummation 2012-04-19 10 / 24

For small TN � Q final state contains exactly N jets (+2 ISR jets)
(Generalization of thrust for e+e−→ 2 jets to pp→ N jets)

13 / 33



Introduction Resumming Jet Cross Sections in SCET Matching with Helicity Amplitudes Examples Conclusions

N -Jettiness Jets

TN =
∑

k

min

{
2qa ·pk
Qa

,
2qb ·pk
Qb

,
2q1 ·pk
Q1

,
2q2 ·pk
Q2

, . . . ,
2qN ·pk
QN

}

≡ T aN + T bN + T 1
N + · · ·+ T NN

++

++

++

++

-4 -3 -2 -1 0 1 2 3 4
-3

-2

-1

0

1

2

3

Η

Φ

geometric E
geometric pT

++

++

++

++

-4 -3 -2 -1 0 1 2 3 4
-3

-2

-1

0

1

2

3

Η

Φ

geometric R=1
anti-kT

Qj = Ej or Qj = pTj Qj = ρ(R, ηj)Ej to have
same jet area as anti-kT

I Can change this to make jet area circular as in anti-kT [Thaler, Tilburg]
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Resummation for N -Jettiness

N -jettiness is theoretically ideal exclusive N -jet algorithm
I Factorization and resummation is known analytically [Stewart, Tackmann, WW]

dσN

dTN
= HN ×

[
Ba ×Bb ×

N∏

j=1

Jj

]
⊗ SN

I Ingredients for NNLL+NLO resummation are available:
I Inclusive quark and gluon jet functions are known even to NNLO

[Becher, Neubert; Becher, Bell]

I Inclusive quark and gluon beam functions
[Fleming, Leibovich, Mehen; Stewart, Tackmann, WW; Berger et al.]

I N -jettiness soft function [Jouttenus, Stewart, Tackmann, WW]

I 3-loop cusp and 2-loop non-cusp anomalous dimensions
[Moch, Vermaseren, Vogt; Aybat, Dixon, Sterman; Gardi, Magnea; Becher, Neubert]

I Extract Hard NLO corrections from helicity amplitudes→ this talk
I Progress in resummation with standard jet algorithms

[Banfi, Salam, Zanderighi; Becher, Neubert;Tackmann, Walsh, Zuberi; Liu, Petriello]
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Matching QCD onto SCET

Leff = LSCET +
∑

k

Ck × Ok

AQCD
!
= ASCET =

∑

k

iCk × 〈Ok〉SCET

Wilson coefficients
I Follow from matching amplitudes in full and effective theory
I Independent of IR regulator
I Depend on renormalization scheme (we use dim. reg. with MS)
I Determine the hard function H = CC†
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Schematic Matching At Tree Level

Consider e.g. Drell-Yan

=

A(0)
QCD

!
= A(0)

SCET

= iC
(0)
qq̄ × 〈Oqq̄〉(0)

SCET = iC
(0)
qq̄

where we normalize Oqq̄ such that 〈Oqq̄〉(0)
SCET ≡ 1
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Schematic Matching At One Loop

= + + +

A(1) = iC
(1)
qq̄ + iC

(0)
qq̄ × 〈Oqq̄〉(1)

A(0)

[
1

ε2
+

1

ε

]
+A(1)

fin = iC
(1)
qq̄ + A(0) ×

[
1

ε2
+

1

ε

]

Using dimensional regularization for both UV and IR
I Bare 〈Oqq̄〉(1) = 0 ∼ 1/εIR − 1/εUV vanishes (scaleless integrals)
I Adding UV counter-term δO ∼ 1/εUV leaves IR divergences
I IR divergences in SCET and QCD are equal
I Works to all orders: iCqq̄ = Afin
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Building Blocks of SCET Operators

I Collinear quark field χn,ω and gluon field Bµn⊥,ω
I Contains collinear Wilson lines for gauge invariance, e.g. χn = W †nξn
I Fields have fixed large momentum carried by their labels p̃µ = ω nµ/2
I Sum over operators includes an integral over labels

∑

k

CkOk →
∫ ∏

i

dp̃iCk({p̃i})Ok({p̃i})

A(1+2+3+
q 4−q̄ 5H) = =

∑
iCi×

Oi

I Textbook approach to spin unnecessary complicated:

O1 = χ̄n3,ω3 n/2 χn4,ω4 Bn1⊥,ω1 · Bn2⊥,ω2 H5

O2 = χ̄n3,ω3 B/n1⊥,ω1 χn4,ω4 n4 ·Bn2⊥,ω2 H5

O3 = χ̄n3,ω3 n/1n/2 B/n1⊥,ω1 χn4,ω4 n4 ·B⊥n2,ω2
H5

. . . [Marcantonini, Stewart]
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Helicity Fields

I Use standard spinor representation for polarization vectors

εµ+(p, k) =
〈p+|γµ|k+〉√

2〈kp〉
εµ−(p, k) = −〈p−|γ

µ|k−〉√
2[kp]

I Define collinear gluon field and qq̄-current of definite helicity

Bai± = −ε∓µ(ni, n̄i)Baµni,ωi

Jαβij± = ∓ εµ∓(p̃i, p̃j)
χ̄αni,−ωi±γµχ

β
nj ,ωj±√

2〈p̃j∓|p̃i±〉

I Resulting tree-level Feynman rules

〈
ga±(p)

∣∣Bbi±
∣∣0
〉

= δab δ̃(p̃i − p)
〈
ga∓(p)

∣∣Bbi±
∣∣0
〉

= 0

〈
qα1

± (p1) q̄α2

∓ (p2)
∣∣Jβ1β2

12±
∣∣0
〉

= δα1β1 δα2β2 δ̃(p̃1 − p1) δ̃(p̃2 − p2)
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Helicity Operator Basis

Assemble helicity fields into helicity operators for each helicity configuration
(S is symmetry factor for identical particles)

O
a1a2···αi−1αi···αn−1αn
±±···(±···±) (p̃1, p̃2, . . . , p̃i−1, p̃i, . . . , p̃n−1, p̃n)

= S Ba1

1± Ba2

2± · · · J
αi−1αi
i−1,i± · · · J

αn−1αn
n−1,n±

Leff = LSCET

+
∑

helicity
configurations

∫ n∏

i=1

dp̃iC
a1···αn
+··(··−)(p̃1, . . . , p̃n)Oa1···αn

+··(··−)(p̃1, . . . , p̃n)

Tree-level SCET amplitude projects out a single Wilson coefficient for given
helicity configuration

〈
ga1

+ (p1)ga2

− (p2) · · · qαn−1

− (pn−1)q̄αn+ (pn)
∣∣Leff

∣∣0
〉(0)

SCET

= C
a1a2···αn−1αn
+−··(··−) (p1, p2, . . . , pn−1, pn)
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Color Decomposition

Pick a complete basis of color-singlet structures to decompose coefficients

C
a1a2···αn−1αn
+−··(··−) = ~T † a1a2···αn−1αn · ~C+−··(··−)

e.g. ~T †αβ =
(
δαβ

)
~T † ab =

(
δab

)
~T † aαβ =

(
T aαβ

)
~T † abc =

(
ifabc, dabc

)
~T †αβγδ =

(
δαδ δγβ , δαβ δγδ

)
~T † abαβ =

(
(T aT b)αβ , (T

bT a)αβ , tr[T aT b] δαβ
)

etc ...

Using the same basis as in the color decomposition of the amplitudes

AQCD(g+g− · · · q−q̄+) =
∑

k

~T
† a1a2···αn−1αn
k Ak(1+, 2−, . . . , n+

q̄ )

MS Wilson coefficients are equal to the color-ordered amplitudes to all orders

~Ck+−··(··−)(p1, p2, . . . , pn−1, pn) = Akfin(1+, 2−, . . . , n+
q̄ )

22 / 33



Introduction Resumming Jet Cross Sections in SCET Matching with Helicity Amplitudes Examples Conclusions

Color Decomposition

Pick a complete basis of color-singlet structures to decompose coefficients

C
a1a2···αn−1αn
+−··(··−) = ~T † a1a2···αn−1αn · ~C+−··(··−)

e.g. ~T †αβ =
(
δαβ

)
~T † ab =

(
δab

)
~T † aαβ =

(
T aαβ

)
~T † abc =

(
ifabc, dabc

)
~T †αβγδ =

(
δαδ δγβ , δαβ δγδ

)
~T † abαβ =

(
(T aT b)αβ , (T

bT a)αβ , tr[T aT b] δαβ
)

etc ...

Using the same basis as in the color decomposition of the amplitudes

AQCD(g+g− · · · q−q̄+) =
∑

k

~T
† a1a2···αn−1αn
k Ak(1+, 2−, . . . , n+

q̄ )

MS Wilson coefficients are equal to the color-ordered amplitudes to all orders

~Ck+−··(··−)(p1, p2, . . . , pn−1, pn) = Akfin(1+, 2−, . . . , n+
q̄ )

22 / 33



Introduction Resumming Jet Cross Sections in SCET Matching with Helicity Amplitudes Examples Conclusions

C and P

I C and P for helicity fields

PBai±(pi) P = Bai∓(pP
i ) CBai± T aαβ C = −Bai±T aβα

P Jαβij±(pi, pj) P = Jαβij∓(pP
i , p

P
j ) C Jαβij±C = −Jβαji∓

I C and P of operators easily determined

I For example for Oabαβ++(+) = 1
2
Ba1+ Bb2+ J

αβ
34+

I Parity: C++(+) = C−−(−) up to a phase
since Lorentz invariants sij = (pi + pj)

2 = (pP
i + pP

j )2

I Charge conjugation relates C++(+) and C++(−):
COabαβ++(+)(p1, p2; p3, p4) C = −Obaαβ++(−)(p1, p2; p4, p3)
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ggqq̄: Basis and Matching

I Six helicity operators:

Oabαβ++(+) =
1

2
Ba1+ Bb2+ J

αβ
34+

Oabαβ+−(+) = Ba1+ Bb2− Jαβ34+

. . .

I Color structures:

~T †abαβ
=
(
T aT b T bT a tr[T aT b]1

)
αβ

I C and P: only C+±(+) independent

I QCD color decomposition:

A(12 3+
q 4−q̄

)
= i

∑

σ∈S2

[
T aσ(1)T aσ(2)

]
α3α4

A(σ(1), σ(2); 3+
q , 4

−
q̄ )

+ i tr[T a1T a2 ] δα3α4 B(1, 2; 3+
q , 4

−
q̄ )

I Matching coefficients:

~C+−(+)(p1, p2; p3, p4) =



Afin(1+, 2−; 3+

q , 4
−
q̄ )

Afin(2−, 1+; 3+
q , 4

−
q̄ )

Bfin(1+, 2−; 3+
q , 4

−
q̄ )




and similarly for ~C++(+)
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ggqq̄: Matching Results
I Nonvanishing tree-level helicity amplitudes

A(0)(1+,2−;3+
q ,4
−
q̄ )=−2g2 〈23〉〈24〉3

〈12〉〈24〉〈43〉〈31〉=2g2
√
|s13 s14|
s12

e
iΦ+−

A(0)(2−,1+;3+
q ,4
−
q̄ )=−2g2 〈23〉〈24〉3

〈21〉〈14〉〈43〉〈32〉=2g2 s13
√
|s13 s14|

s12 s14
e

iΦ+−

sij=(pi+pj)
2=2pi·pj , e

iΦ+−=
〈24〉
[24]

[13][14]√
|s13 s14|

I Pull out convention-dependent overall phase

I One-loop helicity amplitudes were calculated by [Kunszt, Signer, Trocsanyi]

A
(1)
div(1+,2−;3+

q ,4
−
q̄ )=A(0) αs

4π

[
− 2
ε2

(CA+CF )+ 1
ε (2CF L12+2CA L13−3CF−β0)

]
,

A
(1)
fin (1+,2−;3+

q ,4
−
q̄ )=A(0) αs

4π

{
CA

(
−L2

13+L2
12/13+1+ 7π2

6

)
+CF

(
−L2

12+3L12−8+π2

6

)

+(CA−CF )
s12
s14

(L2
12/13+π2)

}

Lij=ln(− sij
µ2 −i0) Lij/kl=Lij−Lkl

I Cross check: IR divergences equal in QCD and SCET

αs
4π

[
− 2
ε2

(CA+CF )+ 1
ε

(
−β0−3CF+2∆̂gg qq̄(µ

2)
)]
~C

(0)

+−(+)
=


A

(1)
div(1+,2−;3+

q ,4
−
q̄ )

A
(1)
div(2−,1+;3+

q ,4
−
q̄ )

B
(1)
div(1+,2−;3+

q ,4
−
q̄ )


∆̂gg qq̄ = anomalous dim. mixing matrix
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ggqq̄: Hard Function

dσ2 =

∫
dxadxb

∫
dΦ2

∑

κ︸︷︷︸
parton types

tr[Ĥκ
2 Ŝ

κ
2 ]︸ ︷︷ ︸

color trace

⊗[BκaBκbJκ1Jκ2 ]

Ĥggqq̄
2 =

∑

λ1,λ2,λ3

~Cλ1λ2(λ3)
~C†λ1λ2(λ3)

I Calculate: ~C++(+) and ~C+−(+)

I Identical particles: ~C−+(+)(p1, p2, p3, p4) = V̂ ~C+−(+)(p2, p1, p3, p4)

I Charge conjug.: ~C++(−)(p1, p2, p3, p4) = −V̂ ~C++(+)(p1, p2, p4, p3)

I Parity gives remaining ~C−−(+) = ~C++(−) etc.

V̂ =




0 1 0
1 0 0
0 0 1


 (interchanging color structures)
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ggqq̄: Soft Function

dσ2 =

∫
dxadxb

∫
dΦ2

∑

κ︸︷︷︸
parton types

tr[Ĥκ
2 Ŝ

κ
2 ]︸ ︷︷ ︸

color trace

⊗[BκaBκbJκ1Jκ2 ]

I Soft function ŜκN is matrix in color space
I At tree-level, soft function has no emissions,

ŜN
b1···βNa1···αN ∝ 1 = δb1a1 · · · δβNαN =

∑

a1,...,αN

~T a1···αN ~T †a1···αN

E.g. for ggqq̄

1gg qq̄ =
CACF

2




2CF 2CF − CA 1
2CF − CA 2CF 1

1 1 CA




I The N -jet soft function at NLO:
I Jet angularities of cone-jets [Ellis, Hornig, Lee, Vermilion, Walsh]
I N -Jettiness [Jouttenus, Stewart, Tackmann, WW]
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ggggH: Basis

A(1+2+3+4−5H) = = iC+++−
O+ + +

I Five helicity operators:

Oabcd++++ =
1

4!
Ba1+Bb2+Bc3+Bd4+H5

Oabcd+++− =
1

3!
Ba1+Bb2+Bc3+Bd4−H5

. . .

I Six color structures:
~T †abcd

=
(

1
2
(tr[abcd] + tr[dcba]), . . .

tr[ab] tr[cd], . . .
)

I Parity: ~C++++ = ~C−−−− and ~C+++− = ~C−−−+ up to a phase
I Under charge conjugation

COabcdλ1λ2λ3λ4

~T abcd C = Oabcdλ1λ2λ3λ4

~T dcba

tr[abcd]− tr[dcba] is thus not allowed
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ggggH: Intrinsic phases
I QCD partial amplitudes

A(1234)=i
∑
σ∈S4/Z4

tr[aσ(1)aσ(2)aσ(3)aσ(4)]A
(
σ(1),σ(2),σ(3),σ(4)

)

+i
∑
σ∈S4/Z

3
2

tr[aσ(1)aσ(2)]tr[aσ(3)aσ(4)]B
(
σ(1),σ(2),σ(3),σ(4)

)

I Matching coefficients are

~C++−−(p1,p2,p3,p4)=


2Afin(1+,2+,3−,4−)...
Bfin(1+,2+,3−,4−)...



I Tree-level helicity amplitudes calculated by [Kauffmann, Desai, Risal]

A(0)(1+,2+,3−,4−;5H)=−2
[

[12]4

[12][23][34][41] +
〈34〉4

〈12〉〈23〉〈34〉〈41〉
]

I Two independent intrinsic phases:

eiφ1 =
〈13〉〈24〉
〈12〉〈34〉

√
|s12s34|√
|s13s24|

eiφ2 =
〈14〉〈23〉
〈12〉〈34〉

√
|s12s34|√
|s14s23|

I Independent of phase conventions
I φi can be written in terms of sij and εµνρσp

µ
1p
ν
2p
ρ
3p
σ
4
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I Tree-level helicity amplitudes calculated by [Kauffmann, Desai, Risal]

A(0)(1+,2+,3−,4−;5H)=2
[

s212√
|s12s23s34s14|

+e−2iφ2
s234√

|s12s23s34s14|

]
eiΦ

I Two independent intrinsic phases:

eiφ1 =
〈13〉〈24〉
〈12〉〈34〉

√
|s12s34|√
|s13s24|
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pp→ Hj: Basis and Matching

I Eight helicity operators:

Oabc+++ =
1

3!
Ba1+ Bb2+ Bc3+H4

. . .

Oaαβ+(+) = Ba1+ J
αβ
23+H4

. . .

I Color structures:

~T †abc = (ifabc) , ~T †aαβ = (T aαβ)

I C and P: only C++±, C+(+) indep.

I Matching coefficients:
~C+++(p1, p2; p3, p4) =

(
Afin(1+, 2+; 3+, 4H)

)

=
(

1√
2

m4
H

〈12〉〈23〉〈31〉 +O(αs)
)

. . .

I NLO matching coefficients known [Schmidt]
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pp→ Hj: Jet Mass Spectrum

I Calculate jet mass of N -jettiness jets [Jouttenus, Stewart, Tackmann, WW]

dσH+1j

dmJ

=

∫
dxadxb

∫
dΦ2

∑

κ︸︷︷︸
parton types

Ĥκ
2 Ŝ

κ
2 ⊗ [BκaBκbJκ1 ]

Shape of jet region:

++

++

++

++

-4 -3 -2 -1 0 1 2 3 4
-3

-2

-1

0

1

2

3

Η

Φ

geometric R=1
anti-kT

Good perturbative convergence:
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0.000

0.005

0.010

0.015

mJ @GeVD

dΣ
`
�d

m
J
@n

or
m

al
iz

ed
D

NNLL
NLL
LL

Y=0, ΗJ=0, pT
J
=300 GeV, T

cut
= 25 GeV

gg®Hg, Geometric R=1
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pp→ Hj: Jet Mass Spectrum

Study kinematics:

0 50 100 150 200
0.000

0.005

0.010

0.015

mJ @GeVD

dΣ
`
�d

m
J
@n

or
m

al
iz

ed
D

ΗJ = 0
ΗJ = 0.5
ΗJ = 1

Y=0, pT
J
=300 GeV, T

cut
=25 GeV

pp®H+1 j, Geometric R=1, NNLL

Comparison with Pythia:

0 50 100 150 200
0.000

0.005

0.010

mJ @GeVD
dΣ̀

�dm
J

@nor
m

al
iz

ed
D

NNLL
Pythia anti-kT
Pythia CA

gg®Hg, R=1, Pythia: 500£pT
J £600 GeV

NNLL: Y=0, ΗJ=0, pT
J =550 GeV, T cut=25 GeV

I Working on pp→ Zj and pp→ jj as well
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Conclusions

Tools to combine generic NLO with NNLL resummation are available
I Natural next step beyond NLO + LL parton showers
I This is precisely what SCET is designed to do
I At NNLL the choice of jet definition is important→N -jettiness

We introduce a helicity operator basis such that

AQCD
fin (1+2 · · ·n+

q̄ ) = iCa1···αn
+··(··−)(p1, . . . , pn)

I Individual color-ordered amplitudes are needed, not just their sum
I Using resummation, virtual amplitudes can be used to get physical cross

sections without expensive integrations over real emissions

Thank you
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